A review of the human-horse relationship

Hausberger, Martine1*, Roche, Hélène1, Henry, Séverine1 and Visser, E.Kathalijne2.

1Université de Rennes I, UMR 6552 C.N.R.S. Ethologie-Evolution-Ecologie, Avenue du Général Leclerc, Campus de Beaulieu, F-35042 Rennes cedex, France

2Animal Sciences Group, Wageningen University Research Centre, PO Box 65, NL-8200 AB Lelystad, the Netherlands

Abstract

Despite a long history of human-horse relationship, horse-related incidents and accidents do occur amongst professional and non professional “horse persons”. Recent studies show that their occurrence depend more on the frequency and amount of interactions with horses than on the level of competency, suggesting a strong need for specific research and training of humans working with horses. In the present study, we review the current scientific knowledge on human-horse relationships. We distinguish here short occasional interactions with familiar or unfamiliar horses (e.g. veterinary inspection) and long term bonds (e.g. horse-owner). It appears clearly that research is needed in order to assess how to better approach the horse (position, posture, gaze...), what type of approaches and timing may help develop a positive bond, what influence human management and care has on the relationship, and how this can be adapted to have a positive influence on the relationship. On the other hand, adequate knowledge is readily available that may improve the present situation rapidly. Developing awareness and attention to behavioural cues given by horses would certainly help decreasing accidents among professionals when interacting. Another whole line is how to try and improve the development and maintenance of a really positive relationship. Studies show that deficits in the management conditions (housing, food, social context, training) may lead to relational problems. Different methods have been used in order to assess and improve the human-horse relation, especially in the young age. They reveal that the time and type of contact all play a role, while recent studies suggest that the use of conspecific social models might be a great help. We argue that an important theoretical framework could be Hinde (1979)’s definition of a relationship as an emerging bond from a series of interactions: partners have expectations on the next interaction on the basis of the previous ones. Understanding that a relationship is built up on the basis of a succession of interactions is an important step as it suggests that attention is being paid to the “positive” or “negative” valence of each interaction as a step for the next one. A better knowledge of learning rules is certainly necessary in this context not only to train the horse but also to counterbalance the unavoidable negative inputs that exist in routine procedures and reduce their impact on the relationship.
1. Introduction

Human–horse relationship has a long and varied history. While meat may have been the first motivation in the very early stages for domestication, horses became progressively important “tools” for transportation and, like other domestic animals, they are currently more and more used as companion animals (Digard, 1999). Contrarily to many other domestic ungulates, which are mostly kept for breeding, meat production, milk production or wool production, horses “rapidly” acquired a mixed status: source of food for some, for leisure and sport for others, or, less frequently, a working companion in rural areas (Edenburg, 1999).

This diversity of uses corresponds to a diversity of people: professional and non professional riders, breeders, lads and caretakers, farriers, veterinarians etc. A gradient can be observed from the short occasional interactions (for example a veterinarian) to the really long term bond that appears between an owner and his/her horse. In all these cases however, problems are encountered, that reveal difficulties in this interspecific communication.

Most available information comes from surveys of accidents that do not give an overview of all problems (minor incidents: bites, jostles, crushes) but enable us to extract some information about the context and types of persons involved. The frequency of biting by horses appears low compared to other domestic animals (2%: Moore et al., 2003), as horses were responsible for 15% of accidents in a survey of 995 American veterinarians behind cattle and dogs, responsible for respectively 46% and 24% of the accidents (Landercasper et al., 1988). In a similar survey, performed with 216 Swiss veterinarians, it appeared that 75% of them were kicked at least once a year (3% were kicked 5 to 10 times) and that these accidents could not reliably be associated with the horse’s breed or emotional state at that time (Jaeggin et al., 2005). Kicks were mainly made using hindlegs. An interesting finding is that the tendency to be injured was more related to the degree of exposure to horses (increasing number of equine patients for vets who didn’t work exclusively with horses) than to experience: the practitioners who did not own a horse were less often kicked by horses. The same conclusion was reached in other studies performed in Switzerland (Exadactylos et al., 2002), Kentucky in the United-States (Kriss and Kriss, 1997) or New-Zealand (Johns et al., 2004): non riding accidents (especially kicks) are more frequent in professional people and rely more on the frequency and amount of interactions with horses than on the level of competency.

These studies underline the need for a better knowledge and observation of the behaviour of the horse in these professions. While falls during riding are more related to non
professional riders as mentioned in the United States (63% Kriss and Kriss, 1997; McCrory and Turner, 2005), Australia (66% Abu-Zidan and Rao, 2003), British (75% Chitnavis et al., 1996) and in New-Zealand reports (Johns et al., 2004), most accidents involving professional people happen mainly beside the horse (grooming, cleaning stables, breeding etc) as recorded by the “Mutualité Sociale Agricole” (Agricultural social insurance) in France in 1999 (51% out of 2057 cases of accidents followed by sick leave). In overall, people working with horses are exposed to different occupational hazards when at foot compared to professional riding (Holler, 1984; Iba et al., 2001; Turner et al., 2002).

These general observations suggest that different skills may be required in various contexts and that while difficulties in riding situations (often due to unexpected movements of the horse: Newton and Nielsen, 2005) may involve both horse training and choice and rider’s training or riding skills (Weeks and Beck, 1996), the difficulties in the daily working situation may involve particularly close attention and good observational skills from people. Most reports suggest that horses were not necessarily nervous at the time of the accident.

In all cases, these reports are indicative of a real need in understanding how to behave with horses and develop a better relationship. Differences are to be expected according to whether the person has to deal with an unfamiliar horse during a short interaction (veterinarians, farriers) or with one or several familiar horses on a daily basis (caretakers, owners). In the first case, close attention and good observational skills have to help positioning and handling at the present moment; in the second case, each interaction will have an influence on the following one and the same skills have to be used in order to establish and maintain a positive bond.

Hinde (1979) defines a “relationship” as the emerging bond from a series of interactions: partners have, on the basis of the past experiences, expectations on the other individual’s responses. In the present report, we will try and review the present scientific knowledge on how to better interact and develop a relationship with horses. The scientific interest on human–horse interactions is recent (Robinson, 1999) and data is still limited but has been increasing considerably in the past few years.
2. *Interacting with horses: which elements are relevant?*

There are very few elements for the general way humans should approach or handle horses. When approaching, humans display postures, may produce vocal signals and may or may not focus their attention on the animal by gazing at the focal animal. The famous case of Clever Hans has revealed how a horse is able to detect and use subtle visual information displayed by a person (Pfungst cited in Waring, 2003).

Positioning, i.e. the relative angle and distance from one organism to another organism, has been suggested to be important in cattle (Grandin, 1980; Grandin and Deesing, 1997) but up to now, no scientific publication is available on horses. It is highly probable however that an inappropriate position may be responsible for some of the accidents recorded (Exadactylos et al., 2002). At this moment we know that horses do show lateralized responses to stimuli which suggests that the side of approach may have an influence (Larose et al., 2006).

Seaman et al. (2002) did not find an influence of the direction of the gaze of the human on the reactions of horses. There was no difference between a person approaching with or without visual contact. Again, further research is needed. Especially as some ponies or horses seem to be sensitive to pointing or touching an object as a directional cue (McKinley and Sambrook, 2000).

Emotional cues may be carried by humans through different channels: voice (prosody), posture, expression and pheromones. The only single study performed on emotional cues shows that when people having negative feelings towards animals, while stroking a horse, they induce an increase of heart rate in the animal in the first few minutes. “Neutral” or “positive” persons do not have such an influence (Hama et al., 1996). Chamove et al. (2002), who performed a study on the effect of human attitude on horse behaviour with one single horse, suggested that human attitude correlates with the behaviour of the horse when led through a predefined course, while Morgan et al. (2000) suggest that the rider’s personality correlates with behaviour patterns of the ridden horse.

There is no evidence whatsoever that the gender of the human has any impact on the behaviour of the horse: yearlings behaved the same way towards a female and a male experimenter in Henry et al. (2005)’s study.

It is likely that other factors such as type or colour of clothes may have an influence, but probably more as a result of experience (white coat and veterinarian handling for example).
Finally, the way the horse is handled may induce different types of reactions. Restraint in its different facets (twitch, hobble, chute, bit with a chain etc.) is often used in order to avoid flight or aggression but application of a twitch reveals to be one of the important sources of accidents for equine veterinarians (Pasquet, 2004). Additionally, a forced contact, early in life, may also induce reluctance for human contact in foals at later stages (Henry et al., in press).

This last finding emphasizes how experience through single interactions may shape the relationship between humans and horses. Naturally, the horse’s own temperament is a substrate on which these experiences will model the way horses respond to humans (Hausberger and Richard-Yris, 2005). Individual differences are observable in young horses raised in similar environments in their tendency to approach or avoid human contact (McCann et al., 1988a; Visser et al., 2001, 2002, 2003a; Lansade and Bouissou, 2005).

However, reactions of horses to interactions with humans are mostly the result of this interplay between their own temperament, the temperament and skills of the human and the experience acquired with humans. While we have to admit that very little is scientifically known on how to approach an unfamiliar horse by adapting posture, position, direction of gaze, emotional state… and that a whole line of research is to be developed here, a large number of studies, mostly in the last decade, have concentrated on the human–horse relationship and its development.
3. Human–horse relationship

Most scientific studies focus on how the animal “considers” humans as a positive, negative or neutral stimulus (Waiblinger et al., 2006) as the result of previous interactions. This requires measurements/evaluations to assess the impact of the experience reflecting the type and length of the interactions.

3.1. Tools for assessing the horses’ relation to humans

The development of methods to evaluate the way horses react to humans is rather recent and a variety of approaches have been developed, especially through behavioural tests.

Observer ratings

The aim here is to have an evaluation of the general way horses behave towards humans in their domestic environments. It is thought that familiar caretakers or “users” may have a good appreciation of the personality of the animals they work with regularly, which includes the relation to humans (Gosling, 2001). A large survey where trainers and veterinarians assessed the behaviour of 10 different breeds revealed that Quarter Horses were classified as “patient” or “obedient” while Arabian horses were classified as “over-reactive” (Hayes, 1998). Other questionnaires have been designed to compare reactions in a behavioural test to the working situation. In these studies correlations were found between reluctance to be led over an unfamiliar obstacle (“bridge test”) and fear reactions while ridden or handled (LeScolan et al., 1997), between fear reactions during the exposure to a novel object (“novel object test”) and the perception of personality traits by unfamiliar riders (Visser et al., 2003b), and between learning abilities in a test and performance or trainability in a riding situation (LeScolan et al., 1997; Visser et al., 2003a, b) or at ground work training (Fiske and Potter, 1979).

Finally, some studies focus on evaluations of personality inspired by researchers in the psychometric field (Mills, 1998; Morris et al., 2002; Momozawa et al., 2003, 2005), amongst which assessments of the horse’s tendency to be “affectionate”, “confident” (Mills, 1998) or show “agreeableness, conscientiousness” (Morris et al., 2002) or “friendliness” (Momozawa et al., 2005) in their relations to humans are given.

These methods remain however dependent on commonly used terms that may be interpreted differently according to the person (Mills, 1998) and the results may not be
suitable for unusual situations. They remain therefore complementary to other methods of assessment.

Behavioural tests

Different tests have been designed where horses are confronted to: a human who stands still (e.g. Visser et al., 2001; Seaman et al., 2002; Søndergaard and Halekoh, 2003; Lansade et al., 2004; Henry et al., 2005) or who is moving (e.g. Jeziernski and Gorecka, 2000; Pritchard et al., 2005); approaches suddenly (Hausberger and Muller, 2002) or slowly (e.g. McCann et al., 1988a); tries to touch the horse (e.g. Søndergaard and Halekoh, 2003; Henry et al., in press).

More “invasive” methods consist in assessing either the acceptance of foals to stroking (e.g. Spier et al., 2004; Henry et al., 2005), equipment fitting (Henry et al., in press; Lansade and Bouissou, 2005) or their response to forced actions such as stroking (e.g. Hama et al., 1996; Williams et al., 2002), grooming (Feh and deMazières, 1993), catching (e.g. Jeziernski et al., 1999), hoof picking (e.g. Spier et al., 2004), veterinarian inspection (e.g. Houpt and Kusunose, 2000; Simpson, 2002).

Finally horses may be led (e.g. Mal and McCall, 1996; Lansade and Bouissou, 2005), possibly over an unfamiliar obstacle (Wolff et al., 1997; Visser et al., 2001) or in a truck (e.g. Shanahan, 2003); and their behaviour recorded during breaking in (Heird et al., 1986; Rivera et al., 2002; Søndergaard and Ladewig, 2004; Lansade and Bouissou, 2005).

Except for the handling tests which are rather specific (hoof picking, truck loading, vet examination etc.), three categories show up amongst the most commonly used tests (Waiblinger et al., 2006):

- **The motionless person test** which consist in one person entering the test area (e.g. Viérin et al., 1998; Seaman et al., 2002; Nicol et al., 2005), the stall-box (e.g. Williams et al., 2002; Henry et al., 2005), the field (Henry et al., 2005) or stands in front of the box (e.g. Lynch et al., 1974; Visser et al., 2001) and who remains still at a distance of a few meters from the animal to be tested. Information concerning visual contact is scarce; the experimenter seeks it (Seaman et al., 2002), avoid it (Seaman et al., 2002; Simpson, 2002) or literature is not informative on the fact. Tests do not exceed 10 minutes.

- **The approach test** in which a person comes closer to the horse, in the test area, the stall-box or the field. Sometimes it is held by a second person (Jeziernski et al., 1999) or tied
(Jezierski and Gorecka, 2000; Pritchard et al., 2005). The horse is more often alone but if it’s a foal, its mother is present and some authors test an individual in the presence of conspecifics (e.g. Lynch et al., 1974; Søndergaard and Halekoh, 2003; Nicol et al., 2005), thus minimising the effects of social isolation for animals which are not accustomed to be alone. A slow and regular gate towards the horse is mainly described and the person walks in direction of the head (with a 45° angle, Pritchard et al., 2005) or the shoulder (Henry et al., 2005, in press), looking at the animal or not (Simpson, 2002). The duration of the procedure is of a few minutes.

- *The stroking test* in which the goal of the experimenter is to evaluate either the reactions of the horse to human physical contact or the tolerance or both. The horse remains free (e.g. Henry et al., 2005; Søndergaard and Halekoh, 2003) or is restrained (e.g. Hama et al., 1996; Spier et al., 2004). The contact is made on a defined area such as the neck (e.g. Hama et al., 1996; Henry et al., 2005) or the withers (Feh and deMazières, 1993). Measures consider the reaction of the animal in term of immobility or interaction with the experimenter (e.g. Henry et al., 2005), or the variations in the horse’s heart rate variables (e.g. Feh and deMazières, 1993; Hama et al., 1996). The tolerance of the animal is assessed by the ability of the experimenter to stroke it or not (e.g. Henry et al., 2005; Spier et al., 2004) and the duration of acceptance of the stimulus (e.g. the saddle pad on the back: Henry et al., 2005).

Behavioural measures

Measurements include for example latency to approach the person (e.g. Visser et al., 2001) or to be approached (e.g. Henry et al., 2005), scores of reactivity with a predefined scale (McCann et al., 1988a, b; Houpt and Kusunose, 2000; Hausberger and Muller, 2002; Pritchett et al., 2003) or frequencies of target behaviours such as number of interactions with the experimenter (e.g. Søndergaard and Ladewig, 2004; Nicol et al., 2005), or gazes (e.g. Henry et al., 2005; Nicol et al., 2005).

Physiological measures

Heart rate (HR) and other related variables have been measured in several studies during handling or in response to the mere presence or appearance of a human (e.g. Feh and deMazières, 1993; Hama et al., 1996; Williams et al., 2002; Visser et al., 2003b).
Cortisol levels have been measured in several studies (e.g. Rivera et al., 2002; Shanahan, 2003) and one study investigated glucose (Spier et al., 2004). It is assumed that when the horse is submitted to a stressful event, its levels of glucose and cortisol would increase. These measures have proved useful in a variety of studies as complementary ways of assessing the potential emotional reaction of the horse to humans but also give rise to contradictory results (e.g. Mills et al., 1997; Mal et al., 1991). An increase in cortisol level may also for example be induced by the mere act of sampling and not as much by the human presence and therefore these measures must be accompanied by other behavioural measurements.

Measuring the reactions of horses to humans: a good way to assess the relationship?

It has to be noted that despite the fact that many studies converge towards similar procedures, the details of these procedures may vary and are not always mentioned. Direction of gaze, posture, positioning, speed of approach, precise type of contact are most often either not mentioned or roughly described. Caution therefore has to be given in the comparisons between studies and future work should aim at standardizing these variables. This, of course, is also due to our lack of knowledge of their effects on the reactions of horses.

Moreover, according to studies, the experimenter can be a familiar or unfamiliar person. The use of such tests for assessing how the horse “categorizes” the humans in terms of positive, negative or neutral stimulus (Waiblinger et al., 2006) implies that horses are considered as being able of generalization from their daily contact to humans to an interaction with an unfamiliar person. That horses are able of generalization has been demonstrated for some cognitive abilities (Hanggi, 2003), but less is known about possible emotional associations. In a study of Henry et al. (2005) however, young horses showed similar reactions to two different experimenters (familiar woman/unfamiliar man), suggesting that this may be the case. Similarly, horses managed by the same caretaker tended to show similar reactions to the appearance of an unfamiliar person (Hausberger and Muller, 2002). On the other hand, a simple test with an unfamiliar person may not totally reflect the potential bond between a horse and its owner or caretaker (Pritchard et al., 2005). Both evaluations would probably be useful.
3.2. Evaluating the humans’ relation to horses

In a recent review, Mills and McNicholas (2005) surveyed the present knowledge on how humans consider their horse. Early reports mention that the majority of riders consider their horse to be part of the family, but that the relationship with horses also depends on society (e.g. Anglo-American vs French society where horses are more readily eaten). Moreover, unlike other pet animals, horses are often not kept on a life long scale as they may be sold when not “usable” or “suitable” anymore. However, even in high level competition, the relationship is considered as involving an emotional bond (Wipper, 2000). In all cases, grief is observed when a horse is lost through euthanasia (Brackenridge and Shoemaker, 1996). Little is still known though on how the reciprocal bond builds and what each partner induces in the relationship. It is highly probable that the way owners or caretakers “view” their horses has an important influence on the way they manage and handle them, as has been demonstrated for other domestic animals (Lensink et al., 2001).

3.3. Human management and horse behaviour towards humans

Few studies have broached this question and none of them gives real information on what factors precisely are involved. When comparing the behavioural reactions of adult breeding stallions in different national facilities, Hausberger et al. (2004b) found large differences between sites in the emotional reactions and learning abilities of horses, but particularly in a test where an unfamiliar experimenter led the horse over an unknown obstacle (“bridge test”). As the different sites did not differ in terms of way of life (box), food, activity (breeding with little work), the authors suggested that the way the humans behaved towards the horses (caretakers) may be responsible for the differences. This hypothesis is reinforced by the finding that, in a study on 224 geldings living in the same conditions, the reactions of the horses to the sudden appearance of an unfamiliar person could be related to the caretaker. Each caretaker was responsible for 7 to 8 horses and these horses tended to respond similarly to this human reaction test (Hausberger and Muller, 2002).

Finally, in a survey on 21 breeding farms, Hausberger et al. (2004a) found large differences in the tendency of yearlings to approach a standing motionless person or to be approached or touched, according to the farm, ranging from 0 to 100% of the foals seeking human contact.
These results strongly suggest that the daily human/horse contact has a great influence on the way horses perceive humans. Although these studies do not give details on what, in the repeated interactions, may lead to such or such type of relation, some cues do exist.

The type of work may be involved: differences have been found in emotionality (Hausberger et al., 2004b) or tendencies for stereotypies (McGreevy et al., 1995a), even when living conditions are totally similar (Hausberger et al., 1996). Thus, dressage horses in overall appear as more reactive. Only one hours daily work is probably a time of high emotional investment between horse and rider and seems sufficient to potentially alter the horse’s general state. Christie et al. (2006) even found more prevalence of weaving with the number of hours of work per week.

The way horses are handled repeatedly can progressively induce reactions: in the Hausberger et al. (2004a) study, the less familiar yearlings had been either very intensively handled or neglected. More contacts could be established with yearlings which have been handled more episodically around weaning or after.

There is a lack of knowledge on the effects of parameters such as ways of handling in adults, attitude of the caretaker (posture, voice…) on the horses reactions to humans. This is an important line of research to be developed as it is certainly crucial in the establishment of the relationship.

The “site” as a multidimensional factor (environmental conditions and human management) appeared as one of the major factors in determining personality in adult horses in a large scale study (Hausberger et al., 2004b).

3.4. Horse personality and its influence on the relation

Despite an important increase in studies on horses’ temperament/personality in recent years (review in Hausberger and Richard-Yris, 2005), very few studies focus on this question. Genetic effects may be involved. Differences according to sire have been found in the reactions of 9000 young thoroughbreds to a veterinarian inspection while the offspring of a given stallion tended to react the same way even when living in different training centres (Houpt and Kusunose, 2000). Foals at weaning tend to be more or less “open” to human contact and handling also according to sire (Henry et al., in press).

Differences between breeds are mentioned in Hayes’ (1998) survey where Quarter Horses are classified as more obedient and patient than other breeds considered.
Thoroughbreds showed more indifference to the appearance of an experimenter while in their box than French saddlebreds or Anglo-Arabs in Hausberger and Muller’s (2002) study.

Although sex differences are often evoked in the professional context, no clear scientific results are available. Sex was not a major factor in determining temperament, and in particular did not influence the responses to the bridge test (Hausberger et al. 2004b; Visser et al., 2001, 2002) a novel object test and a learning test (Visser et al. 2001, 2002, 2003a). No sex differences are evoked either in terms of reactions to humans in Visser et al. (2001, 2002, 2003a) and Henry et al. (2005, in press) studies, but Lansade (2005) mentions that male yearlings would be less close to humans. Clearly, more specific research is needed here.

On the other hand, domestic horse personality and the relation between horses and humans might also be affected by the general management. Physical suffering may induce undesirable reactions to humans (Pritchett et al., 2003; Jaeggin et al., 2005), leading sometimes to aggression (Casey, 2002). Confinement (box) has been shown to be one factor involved in the development of stereotypies or change of behaviour when horses are turned out even when they work regularly (Chaya et al., 2006), but also to reactions at work (Rivera et al., 2002). Also social deprivation at a young age is found to affect the relationship: horses may seek more contact with humans but this is associated with unwanted behaviours such as biting or kicking the trainer (Søndergaard and Ladewig, 2004).

In general, group living horses are found to be easier to handle and train (Rivera et al., 2002; Søndergaard and Ladewig, 2004) which may be due to learning through social interactions with conspecifics, to be attentive to other’s signals, including the trainer’s (Søndergaard and Ladewig, 2004).
4. Developing the relationship: human-foal interactions

The behavioural development of individuals refers to how the behaviours are shaped and modified through maturation and experience (Guyomarc’h, 1995). Different experiential factors are involved in the behavioural development of foals including the physical, social (mother and others) and human environment. In addition, the own temperamental traits of the young will affect the impact that these factors can have.

Many recent studies have considered the importance of the early stages for the later horse-human relation. They deal with questions such as when, how and whether to handle the foals, but also with concerns on the effects of management (social environment, weaning methods). Despite this recent interest, lots of questions remain.

4.1. Foal’s behavioural development

In natural herd conditions, mares actively seek isolation 2 to 24 hours prior to foaling (Waring, 2003) and in the first few days after birth, mares prevent other horses from approaching their young (Estep et al., 1993; van Dierendonck et al., 2004), which might be a way to avoid interferences at the crucial moment of bonding of the foal to its dam (Crowell-Davis and Weeks, 2005).

Mares form a strong reciprocal and exclusive bond with their foals rapidly which is established through the first bouts of licking (in the first 30 minutes) and nursing (Houpt, 2002; Grogan and McDonnell, 2005). The rupture of the dam-foal bond, even on a short term basis, induces extreme distress (McCall et al., 1985; Moons et al., 2005). Over-handling of the neonate (Grogan and McDonnell, 2005) accompanied with or solely the mare’s high level of fear or anxiety related to exposure to humans in particular may induce an impairment of maternal abilities (Rushen et al., 1999; Forde, 2002; Janczak et al., 2003). First suckling occurs mostly between 30 and 180 minutes post-partum (Rossdale, 1967). During the first week of life, the foal tends to remain within 5 meters of its dam (Crowell-Davis, 1986), while this distance progressively increases when the young develops social bonds with other group members, especially the young ones.

Early individual differences can be observed in the distances to the dam, reactions to novelty or humans (Hausberger et al., subm.; Wolff and Hausberger, 1994; Visser et al., 2001) as a result of genetic (sire in particular), maternal influences (Crowell-Davis, 1986;
Henry et al., 2005) or early experiences (Hausberger et al., 2004b; Hausberger et al., in press). But as mentioned before, other aspects, such as husbandry practices may be involved.

4.2. A point on husbandry practices and their impact on foals’ behaviour

Young horses at different farms appeared to react very differently to humans. In a study performed by Hausberger et al. (2004a; in preparation), performed on 21 breeding farms in Brittany (France), 170 young horses, aged between 1 and 3 years old, in some farms all horses approached spontaneously, in others, none approached or even obviously fled when a human entered the paddock. Experimental tests performed on the 2 and 3 year-old horses in the same farms revealed similarly a gradient between farms. Farms could be described as farms where the animals were not emotive and learned easily an instrumental task and farms where the animals showed strong emotional reactions in novel situations and learned badly. Interestingly, the same farms that were found to have calm 2/3 year-old horses, also housed easy and quiet yearlings. When these results are related to management practices, it appeared that the “best” farms (i.e. with easy and calm yearlings and young horses) correspond to those where handling occurs mainly around weaning and/or in the following year, while the farms showing “bad scores” (i.e. fearful animals) were characterized by either very intensive and permanent handling: from imprinting to daily halter fitting, handling, leading etc. or by no handling at all after weaning and the following year.

Therefore there is not a simple linear relation between the amount of handling and the quality of the horse-human relation or the emotional state of the animal. “Excessive” handling may well bring aversive responses (Hausberger et al., 2004a), whereas some periods during the young’s development may be inappropriate for human contacts (or specific kind of human contacts). Furthermore, few studies have investigated the influence of young horses’ housing and management on the relation between horses and humans. One can consider that a variety of environmental factors which are involved in adults (housing in box, social environment, amount of roughage, access to exercise, spacing etc.) may be as important for the young animals (McGreevy et al., 1995a, b; Zeeb and Schnitzer, 1997; Chaya et al., 2006). Thus, all the already mentioned effects of group versus single housing, social experience and confinement are valid in the context of the development of the human-foal relationship (Rivera et al., 2002; Søndergaard and Halekoh, 2003; Søndergaard and Ladewig, 2004).

Within the husbandry practices, one major event is weaning. While weaning naturally occurs at the birth of the next foal that is around the age of one year, most breeders perform
weaning between 4-6 months of age, when the foal is still in close relation to its dam. Under domestic conditions, weaning is commonly recognised for the foal as a source of emotional, physical and physiological stress (Houpt et al., 1984; Knight and Tynznik, 1985; McCall et al., 1985; Malinowski et al., 1990; Hoffman et al., 1995). Not only the breaking of the mare-foal bond is often abrupt (McCall et al., 1985, 1987), but feeding practices and housing may be deeply altered. In parallel, the amount of human contact is frequently increased, as foals are usually vaccinated, dewormed and halter broken during the weaning period. Moreover in a four-year prospective study on 225 foals, Waters et al. (2002) revealed that in domestic situations, stereotypic behaviours emerged rapidly after weaning: they found the incidence of crib-biting to be 10.5% from the age of 20 weeks, whereas 30.0% of foals already showed “wood-chewing” from the age of 30 weeks. Interestingly these abnormal behaviours have never been documented in feral horse populations (Tyler, 1972; Boy and Duncan, 1979) and consequently, particular attention must be paid to weaning and post-weaning breeding practices that may play an important role in the development of stereotypic behaviours or of other behavioural characteristics.

Early weaning experiences have been reported to affect learning abilities, training aptitude and emotionality (Mal et al., 1994; Mal and McCall, 1996). Therefore, several studies have investigated methods of weaning that may reduce undesirable effects.

- **Gradual weaning** through repeated short separations from the dam before complete separation does not improve the reactions and even seem to induce a higher sensitivity of foals to the definitive separation (Moons et al., 2005).

- **Weaning in social conditions** seems to be preferable to isolated weaning. Pair-weaned foals vocalize less (Houpt et al., 1984) as do group-weaned foals (Heleski et al., 2002). Individually housed weanlings are at a higher risk to develop stereotypies (Nicol, 1999). However, the composition of the group has to be considered in order to avoid the social situation to become an additional source of stress (Hoffman et al., 1995). Foals living in groups of mare-dam pairs reacted less to the progressive retrieval of mares (including their dam) than single weaned foals (Holland et al., 1996). Even the presence of unfamiliar adult horses may help reduce the stress (Henry et al., 2006).

- **Environmental conditions**, such as being in a paddock rather than in a box, high foraging opportunities, are other important elements (Waters et al., 2002). Foals fed prior to weaning with a high fat and fibre diet are not only less distressed immediately after weaning than those fed with a starch and sugar diet, but they are also more tractable during a range of tests, including a handling test (Nicol et al. 2005).
4.3. Establishing a human-foal bond

It is well established in dogs and cats, that the previous experience with humans during the first months of life can have a great impact on later behaviour (Appleby et al., 2002; Fox, 1978; McCune, 1995). In farm animals (silver foxes: Belyaev and Trut, 1975; rabbits: Kersten et al., 1989; cattle: Fordyce et al., 1985; Boissy and Bouissou, 1988; Jago et al., 1999; goats: Boivin and Braastad, 1996; pigs: Tanida et al., 1995; sheep: Markowitz et al., 1998), extra human contacts in the early life may also reduce fear responses of animals toward people. Furthermore, these numerous studies have revealed three major factors related to the development of a human-animal bond: (1) the nature, quality and frequency of human contact (Hemsworth et al., 1992; Jones, 1994), (2) the time period when handling occurs (Hediger, 1968), (3) the social environment (Nicol, 1995). It is particularly important in this context to consider that the resulting relation will follow from series of human-foal interactions and that each of these will participate to the construction of the bond.

The timing of interactions

Several studies have concentrated on the neonatal period, to a large extent following Miller (1991)’s claims that this would correspond to a sensitive period, during which this early handling would lead to long term memories. In his “imprint training” commercial method, he recommends to perform immediately after birth, before the first suckling bout, a very thorough handling of the newborn foal on the whole body while restraining it on the ground and to let the foal get in contact with future usually fear-inducing objects (plastic bag, hair clipper, halter…). All scientific studies performed agree on the fact that this procedure does not correspond to an imprinting and that the foals show a high resistance to the procedure (Diehl et al., 2002; Sigurjónsdóttir and Gunnarson, 2002) and show signs of stress.

Whether this early stress is justified in terms of later ease of handling, habituation to stimuli or lowered emotional reactions is not quite clear yet, but even when positive effects are mentioned they remain rather limited. Williams et al. (2002, 2003) who handled foals at birth and/or at 12, 24 and 48h after birth found no beneficial effect on foals’ behaviour when tested at 1, 2 and 3 months of age (Williams et al., 2002) or at 6 months of age (Williams et al., 2003). Some other studies point out some positive effects on a short-term basis: for
example, the same approach performed between 1 and 5 days by Simpson (2002) showed that handled foals approached a familiar person (but not a stranger) more easily at the age of 4 months, while Spier et al. (2004) mentioned a better acceptance of hind feet handling in handled foals at the age of 3 months. Overall, the handling did not show any positive effect on the fear reactions of foals towards specific stimuli: for instance, the imprinted foals reacted as strongly as the control foals to halter fitting or shearing at 3 or 4 months of age (Simpson, 2002; Williams et al., 2002; Spier et al., 2004). According to Simpson (2002), the slight positive effect on approachability might well be obtained as well with later handling. Furthermore, the beneficial effects reported by some horse breeders or owners could be related to other approaches of animals (relation to the mare, food reward) or might be the result of reinforcements through frequent subsequent training sessions (Williams et al., 2002). Sigurjónsdóttir and Gunnarson (2002) also concluded that imprinted foals, that were not regularly handled afterwards, were as difficult to approach as controls.

Handling at later stages, in the days or weeks following birth does not seem to have long lasting effects either, even if they facilitate haltering, leading and reduce emotional reactivity in the human presence on a short-term basis (Mal and Mc Call, 1996; Jezierski et al., 1999; Lansade et al., 2005). In Mal et al. (1994)’s study, foals handled (stroking, haltering, picking up feet) twice daily during 7 days after birth with or without a session per week until weaning were not easier to handle 4 months after weaning than non-handled foals. Conversely, the same handling performed during the first 14 days following birth gave also short-term effects that decreased rapidly with time: handled foals were more tractable 3 months later than non-handled foals in haltering, leading and picking up feet tasks, but six months later only few differences were found and at one year of age, there was no more differences between handled and not handled foals (Lansade et al., 2004). To maintain the beneficial effects of early handling, it seems necessary to repeat handling on a regular basis. The study of Jezierski et al. (1999) showed that foals, which are handled 5 days a week from the age of 2 weeks or 10 months to the age of 24 months scored better on manageability tests (catching, leading, picking up feet, being approached by an unfamiliar person) at 12, 18 and 24 months than non-handled foals.

Handling at weaning seems to be more efficient, especially if it is repeated in a longer term. Heird et al. (1986) reported that horses handled regularly from weaning until 18 months of age had a higher trainability than the other foals. Lansade et al. (2004) compared two groups of foals handled (haltering, leading, picking up feet) daily for 12 days: the first group was handled immediately after weaning (early handled), whereas handling of the second
group began 3 weeks after weaning (late handled). A third group consisted in non-handled foals. Results showed that early and late handled foals were easier to handle and less reactive than controls. However 18 months after the end of the handling period, the late handled foals did not differ from controls, whereas the early handled still showed few differences. At this particular period when foals are socially deprived, they may be more open to human contact. Some breeding farms appeared indeed to choose this time period for handling (see above). However, it appears that some effects diminished with time (Lansade et al., 2004). Weaning and the following year may well be privileged time for establishing the bond. However, there is no clear evidence in foals for the existence of sensitive periods through development, which may facilitate the establishment of a foal-human bond. According to the results of Søndergaard and Halekoh (2003), 2 year-old non-handled animals become as familiar as handled animals, probably as a result of the mere daily exposure to the caretakers bringing food. One has to consider the influence of additional handling as compared to daily contacts with the young through routine procedures. The simple association of humans with events such as food distribution is a clear positive association and appears to be sufficient to reduce the level of fear (Søndergaard and Halekoh, 2003). As in adults, the daily relation to the caretaker and its attitude towards animals must be taken into account. Therefore, the most promising research line may well be in the way the relation is established rather than the moment.

Handling the foal or “its environment”? The type of handling and how it is perceived by the animal could strongly influence its impact on the later human-animal relationship. In domestic horses, a small amount of investigation has been done on how the handling of various human contacts was perceived. It was nevertheless assumed that non-aggressive forms of tactile contact (gentling, stroking or brushing) were rewarding or positive. However in farm animals, mixed results were observed (see above). Some studies have therefore investigated whether gentling or brushing had a rewarding value for animals. The results suggest that gentling is not necessarily rewarding for animals (Boivin et al., 1998; Jago et al., 1999; Pajor et al., 2003) and Pajor et al. (2000) found even some evidence that cows find brushing to be aversive. Furthermore in many of the studies in which human contact has been shown to reduce the animals’ fear of humans and improve handling ability, the human presence was associated with the provision of food (de Passillé et al., 1996; Munksgaard et al., 1997). On the other hand, some studies (Jago et al.,
1999; Hemsworth et al., 1996) report that handling without feeding mediation does not improve animals’ responses to humans. The association of the human presence or handling with a positive reinforcer (food) is a clear positive association for animals, which may lead to lower the negative impact of handling. For instance, scientists working with laboratory primates have achieved considerable success in using food rewards to train animals to extend an arm or a leg for blood sampling (Reinhardt, 1991). It could be of high interest to use such approaches with young horses, as soon as they orient their feeding behaviours toward solid food. In addition, it has been demonstrated that the mere exposure to a motionless human may lead to beneficial effects (cattle: Le Neindre et al., 1994; red deers: Pollard et al., 1994; pigs: Hemsworth et al., 1986; goats: Lyons et al., 1988) and that the mother’s reactions to humans may be transmitted to its young through social facilitation (goats: Lyons et al., 1988; Ruiz-Miranda and Callard, 1992; quails: Bertin and Richard-Yris, 2004). Moreover, Sigurjóndóttir and Gunnarsson (2002) found a correlation between the dam’s nervousness and the imprinted foal’s resistance to capture, haltering and leading at the age of 4 months. Thus when mares were calm, foals were easier to handle.

In order to identify which approach of the foal is the most adapted, Henry et al. (2005; in press) have performed a set of experiments, including different approaches at birth or in the following days. Four approaches were thus tested and compared to a controlled situation (no additional handling):

1. Two of them consisted of actively handling the foals:
 - A common practice in breeding farms that consists in bringing the foal to the dam’s teat. This is a very short handling that was here performed 30 minutes after birth,
 - A forced handling (stroking) of foals during 15 minutes in the five days after birth (the foal was restrained between its dam and the handler.

2. The other two treatments involved a “manipulation of the foals’ environment” (exposure to human) in the postpartum period:
 - A mere daily exposure during 15 minutes to a passive human in the five days post-partum,
 - A gentle handling of the mare (soft brushing and food reward) in front of the foal, without any direct attention from the experimenter to the foal during the same period (testing a possible social facilitation).

When the effects of the 4 types of handling were compared at later ages, it appeared that foals, which have been brought to the teat or forcibly handled, tended to refuse a direct contact afterwards (high flight distance). It can also be noticed that during the handling
procedures, foals attempted to escape from restraint. Conversely, foals that had been shortly exposed to a passive human presence, showed lower flight reactions than controls at the age of 2 weeks, but the effects were not long lasting. Furthermore, those, which dams interacted with the experimenter during the treatment, became more rapidly familiar with the person than those of indifferent mares (Henry et al., 2005, in press). Finally, foals whose dams had been brushed and hand-fed, approached very readily the experimenter at the age of 2 weeks and accepted easily a direct human contact, as well as for most of them a saddle pad on the back at the age of 1 month. Interestingly, these animals whose mares had been gently handled were easily approached in the paddock and stroked on the whole body by a familiar or non familiar experimenter one year later, while it was even difficult to merely approach the control yearlings at that time (Henry et al., 2005). The durability of the effects obtained after very short handlings of the foal is in favour of such an approach. The use of this natural tendency of the foal to learn from the dam seems therefore promising, especially as it does not induce any stress. It is however likely that the effects may be very negative if the human-dam relationship is poor or if the mare is particularly nervous or aggressive. Establishing a positive human-dam relationship may therefore be one key to enhance durably the manageability of foals.

In conclusion, in accordance to Hinde (1979)’s theory, it is likely that each invasive human interference, if it induces stress, may alter the development of the human-foal bond. It appears difficult to evaluate what is really positive from the animal’s point of view, but it is similarly probable that the accumulation of positive interactions may reinforce the development of a positive relationship. Thus, handling may be assessed as positive only when the animal’s behavioural responses during the ongoing treatment are positive, which implies approach/seeking contact, but no avoidance, aggression or at least no flight. During the presence of a motionless person and above all during the mare’s soft handling treatment, foals clearly enhanced their proximity to the person involved and initiated physical interactions (Henry et al. 2005, in press), while forced handling of foals (imprinting, stroking, haltering) induced a strong resistance of animals, as seen previously, and has to be considered with caution.
5. From interactions to relationships: the importance of learning processes

The daily human-horse interactions are very varied and include both positive (for example feeding) and negative (for example veterinary inspections and treatments) events, leading to a more or less balanced relationship. Many of the tasks associated with the management of animals, such as vaccination, foot care, administration of medication and transport, may constitute aversive contacts with humans, which as a result, may increase fear reactions of animals and induce long lasting undesirable reactions to humans.

In laboratory primates, considerable success has been achieved in using food rewards (see above, Reinhardt, 1991), while, as mentioned before, food provisioning may enhance the effects of handling in domestic animals (Jago et al., 1999; Hemsworth et al., 1996). These findings are in accordance with general learning rules that, if they were applied, would certainly prove very useful in improving the human-horse relationship, whether while handling or riding it. According to Hinde (1979), each interaction is influenced by the previous one(s) in the process of developing a relationship: therefore, according to the possible “positive or negative memory” related to it, each partner has expectations on the other’s behaviour at the following one, which can also be modulated by all the other previous experiences.

Learning rules are rarely mentioned in the training of professional or non-professional riders and caretakers, and empirical observations show a tendency for trainers to overemphasize negative reinforcements (increase of a behaviour in order to avoid an aversive stimulus) and punishments (diminishing the appearance of a behaviour by using aversive stimulus) and pay little attention to potential positive reinforcement (Waran and Casey, 2005).

Amongst the problems mentioned, are the over-use of punishment to reduce an ongoing behaviour which can place the horse in a situation where it has no control, leading to motivational conflict; the involvement of ineffective rewards such as patting that is unlikely to be an innately pleasurable experience for a horse; a poorly timed reward which makes rewards become meaningless or even encourage inappropriate behaviours (McGreevy and McLean, 2005; Waran and Casey, 2005). This poorly timed rewarding has often led to the abandon of primary reinforcers such as food which, while powerful if associated with a task, may induce begging or even biting if given out of context. Additionally, the lack of clarity of orders induces confusions and may lead to neurotic behaviours (Richard-Yris et al., 2004).
An excessive conflict between horse and rider (unjustified punishment, a too harsh negative reinforcement) leads to stress and creates risks of increased levels of agonistic behaviour such as biting, kicking, bucking or rearing (McGreevy and McLean, 2005). Pinchbeck et al. (2004)’s study even shows that whip use (negative reinforcement) during hurdle and steeplechase racing is associated with horse falls.

Inappropriate “tools” and “riding aids” such as hard bits, badly adjusted or unfitted saddles, lead to undesirable reactions (Newton and Nielsen, 2005) and the repetition of the association between riding and pain can certainly contribute to an altered human/horse relationship.

The above mentioned example of primates’ training shows that even negative events can be counterbalanced by using appropriate learning rules. This clearly remains a line for future research, observation but also training of humans working with horses. The key for developing and maintaining a positive human/horse relationship relies certainly upon it, both when dealing with adult or young animals. Precisely in the latter, it may be especially important to be aware of these rules in order to avoid having “bad memories” of interactions interfering with the development of the relationship.
6. **Conclusion and perspectives**

This review elucidates the strong need for specific research and training of humans working with horses in order to improve the human/horse relationship that, as shown by the high incidence of accidents, is far from being optimal yet.

Further research is needed in order to assess how to better approach the horse (position, posture, gaze…), what type of approaches and timing may help develop a positive bond, what influence human management and care has on the relationship, and how this can be adapted to have a positive influence on the relationship.

On the other hand, adequate knowledge is readily available that may improve the present situation rapidly. Developing awareness and attention to behavioural cues given by horses would certainly help decreasing accidents among professionals when interacting. The higher level of accidents with veterinarians owning horses has been attributed to a lowered attention (Jaeggin et al., 2005), while the accidents (kicks, crushes, jostles) implying professionals caretakers and leisure riders underline the need for a better knowledge and observation of the horse (e.g. Kriss and Kriss, 1997). It is interesting that these accidents do not decrease with experience or level of competency, showing that new training for this group is required.

Finally, professional and non professional people should be stimulated and informed in order to try and improve the development and maintenance of a really positive relationship. They have to be aware that deficits in the management conditions (housing, food, social context, training) may lead to disturbances in the horse’ behaviour and ultimately to relational problems.

Moreover, understanding that a relationship is built up on the basis of a succession of interactions, may make them aware of the importance of a good knowledge of basic learning rules in order to be able not only to train the horse but also to counterbalance the unavoidable negative inputs that exist in routine procedures and reduce their impact on the relationship.

While learning to be able to interact with any horse is crucial in some professions (farriers, veterinarians), learning to develop a relationship is especially crucial for breeders, caretakers, horse owners, trainers. No recipe-based method can bring the required capacity to adapt to horses and/or to situations (Waran and Casey, 2005). Only well trained observational skills associated with better knowledge can produce this result.
7. References

http://www3.vet.upenn.edu/labs/equinebehavior/hvnwkshp/hv02/sigurjon(1).htm

